Monatshefte für Chemie 111, 547-550 (1980)

Die Kristallstruktur des Komplexnitrides Mo(Ta,Mo)₂N₂

Kurze Mitteilung

Peter Ettmayer* und Alfred Vendl

Institut für chemische Technologie anorganischer Stoffe, Technische Universität Wien, A-1060 Wien, Österreich

(Eingegangen 7. November 1979. Angenommen 10. Januar 1980)

The Crystal Structure of the Complex Nitride $Mo(Ta,Mo)_2N_2$ (Short Communication)

In the ternary system Ta/Mo/N a complex nitride of formula Mo(Ta,Mo)₂N₂ was observed at a nitrogen pressure of 360 bar and a temperature of 1,600 °C. The crystal structure was determined from X-ray powder diagrams. The tetragonal unit cell, space group $I4/mmm-D_{4h}^{17}$, lattice parameters a = 0.3051 nm, c = 1.2530 nm contains ten atoms with an arrangement of the metal atoms corresponding to the MoSi₂-Type structure.

(Keywords: Crystal structure; Molybdenum nitrides; Nitrides; Tantalum nitrides)

Beim Studium der ternären Systeme Ta/Mo/N wurde das Komplexnitrid Mo(Ta,Mo)₂N₂ bei einem Stickstoffdruck von 360 bar und einer Temperatur von 1600 °C erhalten. Die Kristallstruktur wurde aus Pulverdiagrammen ermittelt. Sie gehört zum aufgefüllten MoSi₂-Strukturtyp. Im Aufbau ist eine große Ähnlichkeit mit den vor kurzem beschriebenen Komplexnitriden NbMoN_{1-x} ($x \le 0,1$) und TaMoN (Lit.^{1,2}) sowie NbCrN und Ta_{1-x}Cr_{1+x}N (Lit.^{3,4}) festzustellen.

Diese Verbindungen gehören zum aufgefüllten θ -CuTi-Typ, zu dem auch das Komplexnitrid CaGaN (Lit.^{5,6}) zählt. Charakteristisch ist sowohl für Mo(Ta,Mo)₂N₂ als auch für die als Z-Phasen bezeichneten und auf die Struktur des θ -CuTi zurückgehenden Komplexnitride ein schichtartiger Aufbau.

Im Falle des $Mo(Ta, Mo)_2N_2$, das etwa einer Formel $Mo(Ta_{0,75}Mo_{0,25})_2N_2$ entspricht, wechseln einander Schichten aus vierseitigen (Ta,Mo)-Pyramiden (die Atompositionen 4e sind zu

³⁶ Monatshefte für Chemie, Vol. 111/2

(hkl)	sin²θ · 1 000 ber.	sin²θ · 1 000 beob.	Intensität ber.	Intensität beob.
·				
002	15.14	_	.2	
004	60.56	60.56	119.9	14
101	67.62	67.68	75.5	7
103	97.90	78.00	1000.0	100
110	127.67	127.72	489.5	52
006	136.25	136.50	145.4	16
112	142.81		.0	
105	158.45	158.40	72.5	7
114	188.23	188.60	93.2	9
008	242.22	242.45	23.5	2
107	249.29	249.33	76.8	- 9
200	255.34	255.35	160.3	17
116	263.92	264.10	197.7	21
202	270.48		.0	
204	315.89	315.95	40.1	2
211	322.96	322,90	17.4	1
213	353.24	353.50	277.6	28
118	369.89]	000,00	47.4	
109	370.40 (370,20	43.9	9
0010	378.48	378.45	11.1	1
206	391.59	391.65	102.9	12
215	413.79	413.83	28.8	$\overline{2}$
208	497.56	497.55	31,5	3
217	504.63	505 20	54.9	0
1110	506,14 (505,20	30,4	9
220	510,68	510,72	55,5	6
1011	521,79	522,03	68,9	6
222	525,81		,0	
0012	545,00		2,7	
224	571,23	571,20	18,6	2
301	578,30		4,4	
303	608,57	$608,\!65$	74,1	8
219	625,74	626, 30	50,1	6
2010	633, 81	634,04	26,5	3
310	638,34	$638,\!63$	96,9	10
226	646, 93	647, 12	62,5	6
312	$653,\!48$	—	,0	
305	669, 13	669, 12	9,3	1
1112	$672,\!67$	672,95	10,0	1
314	698,90	690, 15	36,5	3
1013	703,46	703,71	16,0	2
0014	741,81	741,92	20,0	2
228	752,90	752,95	28,7	3
307	759,96	760, 12	26,2	3
316	774.60	774,80	138,7	14

Tabelle 1. Beugungsdiagramm von Mo(Ta,Mo)₂N₂, Raumgruppe 14/mmm- D_{4h}^{17} CuKa-Strahlung

(hkl)	sin²θ · 1 000 ber.	$\frac{\sin^2\theta \cdot 1000}{\text{beob.}}$	Intensität ber.	Intensität beob.
2111	777,13	778,34	136,3	14
2012	800,34	800,45	11,5	1
321	833,63	833,72	11,2	1
323	863,91	863,98	205,6	20
1114	869, 48	869,52	107,9	12
318 309	880,57 881,08 (881,10	79,7 37,3 (12
2210	889,15	889,70	41,6	5
1015	915,40	_	,1	
325	924,47	924,53	34,8	4
2113	958,80	958, 95	81,9	8
0016	968,90		4,0	
2014	997.15	997.26	746.6	76

Tabelle 1 (Fortsetzung)

Tabelle 2. Interatomare Abstände

Atom	Nachbaratome	Abstand (nm)
Mo	4(Ta,Mo)*	0,2837
	$4 \mathrm{Mo}$	0,3051
	$2\mathrm{N}$	0,2230
(Ta,Mo)	$4 \mathrm{Mo}$	0,2837
	4(Ta,Mo)*	0,3051
	4(Ta,Mo)*	0,3364
	4 N	0,2192
	1 N	0,2193

* Die Atompositionen $4\,e$ sind zu 25% mit Mo-Atomen und zu 75% mit Ta-Atomen besetzt.

25% mit Mo-Atomen und zu 75% mit Ta-Atomen besetzt) mit ebenen Netzwerken quadratisch angeordneter Mo-Atome ab.

Da die Festlegung der genauen Positionen der Stickstoffatome auf Grund des zu geringen Beitrages zur Beugungsintensität durch Intensitätsvergleich zwischen Rechnung und Beobachtung röntgenographisch (ohne Differenz-*Fourier*) nicht exakt möglich ist, wurden die Stickstoffatome auf die sich ergebenden Lücken im Metallgitter verteilt.

Dabei ergibt sich, wie schon öfter beobachtet und beschrieben 36* wurde^{7,8}, daß jedes Stickstoffatom von 5 Metallatomen in Form einer vierseitigen Pyramide umgeben ist.

In Tab.1 ist die Auswertung des Pulverdiagramms von $Mo(Ta, Mo)_2N_2$ wiedergegeben. Es zeigt gute Übereinstimmung zwischen gerechneten und beobachteten Werten der Intensitäten.

Durch die folgend angegebene Verteilung der Atome auf die Punktlagen der Raumgruppe *I4/mmm* konnte optimale Übereinstimmung zwischen Intensitätsrechnung und Beobachtung erzielt werden.

$2{ m Mo}$	in (a)	0, 0, 0
		$\frac{1}{2},\frac{1}{2},\frac{1}{2}$
1 Mo + 3	Ta in (e)	$0, 0, z_1$
		$0, 0, - z_1$
		$rac{1}{2},rac{1}{2},rac{1}{2}+z_1$
		$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -z_1$
4 N	in (e)	$0,0,z_2$
		$0, 0, -z_2$
		$\frac{1}{2}, \frac{1}{2}, \frac{1}{2} + z_2$
		$\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\cdots z_2$

mit $z_1 = 0.353$, $z_2 = 0.178$.

Tab. 2 gibt die Atomabstände zu den jeweils nächsten Nachbarn an.

Literatur

- ¹ A. Vendl, Mh. Chem. 110, 103 (1979).
- ² A. Vendl, Mh. Chem. 109, 1001 (1978).
- ³ P. Ettmayer, Mh. Chem. 102, 858 (1971).
- ⁴ D. H. Jack und F. H. Jack, J. of the Iron and Steel Institute 210, 790 (1972).
- ⁵ J. Guyader, P. Verdier und J. Lang, Revue de Chimie minérale 13, 408 (1976).
- ⁶ P. Verdier, P. L'Haridon, M. Maunaye und R. Marchand, Acta Cryst. B30, 226 (1974).
- ⁷ A. Vendl, Planseeber. f. Pulvermetallurgie 26, 233 (1978).
- ⁸ P. Ettmayer und A. Vendl, J. of Less-Common Met., im Druck.